
Contents
1 Summary of progress that has been made 1

1.1 Paper section . 1
1.2 Code . 1

2 Summary of things relating to the progress that still need
polishing 2
2.1 Paper section . 2
2.2 Code . 2

3 Other things moving forward 3

1 Summary of progress that has been made
The two main things that have been accomplished in this first leg of the
project are as follows:

1. Add an initial section to the paper describing layout design. Create
tentative Greek keymap.

2. Code up a working version of the Greek layer, with full diacritic sup-
port accomplished through punctuation correspondences.

1.1 Paper section

Ironically, I had significant problems getting my LATEX PDF exporting work-
ing with Greek Unicode. No matter what packages I put in the header or
which compiling backend I used (e.g., pdflatex, xelatex, etc.), I could not get
Greek characters to properly display. I spent a few hours trying to debug
this, then posted a question on a Stack Exchange and gave up. Hopefully
I’ll get this resolved in due time, but for the moment, people who wish to
read the paper best stick with GitHub’s rendering of the Org file.

I tried to not get too technical with regard to keyboard layout optimiza-
tion, but still give people an idea of what is involved. The main takeaway
is that it makes the most sense to piggyback off of already-learned layouts
rather than attempt to get an entirely foreign layout in muscle memory,
even if the latter might be "better" from a purely theoretical perspective
(i.e., have lower finger travel distance, lower same finger, etc.).

The first stab at a Greek-English correspondence is now present. I used
phonetic correspondences as much as possible, and then other mnemonics

1

https://github.com/StevenTammen/unicode-language-layers/blob/master/docs/design.org

after that. Only the letter Theta proved impossible to place with such things.
A brief discussion of Koppa and Digamma (to go on Q and V, respectively),
is also included.

There are some TODOs present, and I need to figure out how to set
up footnote exporting within Org mode. But this is a reasonably complete
start for the Greek side of the design process.

1.2 Code

Because of the AutoHotkey software package I am using (Dual), the basic
remappings proved to be trivial. It was the diacritics that proved challenging
(as expected).

The thing that took me the longest this first go of it was figuring out a
seamless way to add and remove diacritics. I opted to go with precombined
Unicode characters at the moment, but have read enough now to see the
pros and cons of both the precombined and decomposed approaches. This
page in particular was very informative about "why things are the way they
are," and exactly how Greek works with Unicode. Even though decomposed
support is getting better (and works absolutely fine with some fonts and
applications), it looks like precombined is still the most universally "safe"
option for input.

At a high level, my current implementation uses a few global status vari-
ables to keep track of which diacritical features are present (e.g., breathings,
accents), and then a whole bunch of conditionals to output the correct pre-
combined characters. The simplest way to get this working was simply to
backspace the vowel (with XY diacritics, e.g.), and replace it with a new
version of the vowel (with XYZ diacritics, e.g.). From the end user’s per-
spective, it looks as if things are getting added and removed instantly, even
though the old character is getting deleted, and the new character displayed.

Having all the logic in branched conditionals keeps the checks perfor-
mant, and I haven’t observed any noticeable latency.

2 Summary of things relating to the progress that
still need polishing

2.1 Paper section

Aside from getting the PDF exporting working, I need to add justification for
the punctuation symbols I chose for diacritics (’‘~/[] for acute, grave, circum-
flex, iota subscript, rough breathing, and smooth breathing, respectively).

2

https://github.com/lydell/dual
http://www.opoudjis.net/unicode/unicode.html
http://www.opoudjis.net/unicode/unicode.html

These were chosen because of a combination of memorability (a backtick
looks like a grave accent, for example), and efficiency (on QWERTY, square
brackets don’t require a shift but parentheses do, for example).

2.2 Code

I still need to add rough breathing for Rho, and add an option to make
backspacing incremental for diacritics (right now it deletes the whole vowel).
You can get rid of diacritics you don’t want by pressing the key that cor-
responds to them again, but some people might want Backspace to do the
same, since it is somewhat more logical.

I also need to add support for dieresis (to show syllable boundaries in am-
biguous vowel combinations), and macrons/breves for vowel quantity. The
issue with these is that there are not "official" precombined Unicode charac-
ters for many combinations. Whether I choose to use decomposed diacritics
or Private Use Area (PUA) code points (e.g., see here), implementation is
going to be a real headache.

I am also debating whether or not to even try and create options for
writing diacritics through sequences and key combinations, since these would
be even more complex than the current method, and far less efficient, as far
as I can see. Of course, I’m opinionated (some individuals in the survey
did wish to use these options), but even so, I may opt to make a strong
argument for why I have things set up how they are (to try and "convert"
people) rather than spend a bunch of time implementing what amounts to
an inefficient entry method. I could also write a brief section on how it could
be done, and then leave implementation up to someone else, if they wished
to have such functionality.

3 Other things moving forward
Before getting much further on the Greek end of things, I’ll want to get
much of the same done for Hebrew. That is, create a keymap and code the
basic implementation. Of course, Hebrew is even more challenging on the
implementation side of things since all the vowels are done through diacritics.

I also want to write up an API and fairly extensive documentation for
how things may be changed. I’m toying with the idea of a GUI interface via
JavaFX or QT (etc.) to let people configure things without having to look
at any code, but honestly, this would take a pretty substantial amount of
time to set up. I think it might be best for me to document everything (the
functions and their use, primarily), give some examples, and then let people

3

https://apagreekkeys.org/technicalDetails.html#PUA

customize things in the scripts themselves, with support through a Google
Group or other mailing list. We will see.

4

	Summary of progress that has been made
	Paper section
	Code

	Summary of things relating to the progress that still need polishing
	Paper section
	Code

	Other things moving forward

